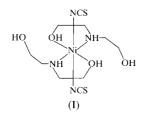
metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

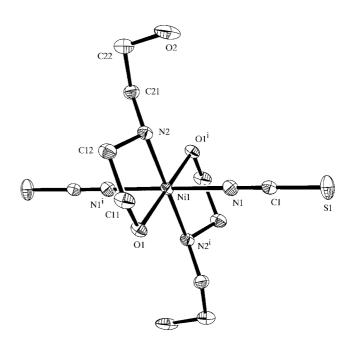
ISSN 0108-2701

trans-Bis(diethanolamine)bis(isothiocyanato)nickel(II)

Veysel T. Yilmaz,^a* Ahmet Karadag,^a Carsten Thöne^b and Regine Herbst-Irmer^c


^aDepartment of Chemistry, Faculty of Arts and Science, Ondokuz Mayis University, 55139 Kurupelit Samsun, Turkey, ^bInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^cInstitut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany Correspondence e-mail: vtyilmaz@samsun.omu.edu.tr

Received 5 May 2000 Accepted 15 May 2000


In the neutral title complex, *trans*-bis(2,2'-iminodiethanol-N,O)bis(isothiocyanato)nickel(II), [Ni(NCS)₂(C₄H₁₁NO₂)₂], the isothiocyanate ions and the diethanolamine molecules act as monodentate and bidentate ligands, respectively. The Ni^{II} ion exhibits a distorted octahedral configuration with crystallographically imposed inversion symmetry and N_{NCS}-Ni-N_{amine} and N_{NCS}-Ni-O_{amine} bond angles of 88.78 (10) and 89.44 (10)°, respectively. The Ni-N bond distances are in the range 2.069 (3)–2.096 (2) Å. The molecules are linked by hydrogen bonds to form a three-dimensional infinite lattice.

Comment

As part of our study on the synthesis and spectral and thermal analysis of transition metal complexes of ethanolamines (İçbudak *et al.*, 1995; Karadag & Yilmaz, 2000), we describe here the structure of the title complex, (I), resulting from the reaction of diethanolamine with KSCN and NiSO₄·6H₂O.

The Ni^{II} ion occupies a crystallographic inversion centre and is octahedrally coordinated by two mutually *trans* diethanolamine molecules and two mutually *trans* isocyanate ions (Fig. 1). Each diethanolamine acts as a bidentate donor through its N and one O atom (O1); the other ethanolic group containing O2 does not participate in coordination. The coordinating N and O atoms of diethanolamine are positioned in the equatorial plane of the octahedron, while the monodentate isothiocyanate ions occupy the axial positions. The Ni $-N_{amine}$ bonds [2.096 (3) Å] are somewhat longer than the Ni $-N_{NCS}$ bonds [2.069 (3) Å] and these Ni-N bond distances

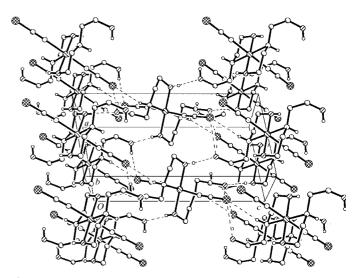


Figure 1

The structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x, 1 - y, 1 - z.]

are comparable with those found in the analogous monoethanolamine Ni^{II} complex [2.085 (5) and 2.065 (5) Å, respectively; Hursthouse *et al.*, 1990]. The Ni–O distances in the title complex are 2.076 (2) Å and are comparable with those in the related di- and triethanolamine complexes of Ni^{II} reported by Hursthouse *et al.* (1990) and İçbudak *et al.* (1995) of 2.094 (4) and 2.068 (1) Å, respectively.

The N_{NCS}-Ni-N_{amine}, N_{NCS}-Ni-O and N_{amine}-Ni-O bond angles of 91.22 (10), 89.44 (10) and 83.16 (9)°, respectively, indicate significant distortion from ideally octahedral coordination geometry around the Ni^{II} atom. The NCS groups are almost linear, but significant bending is observed in the

Figure 2

A view along the b direction showing the hydrogen bonding. H atoms not involved in hydrogen bonding have been omitted.

Ni-N-C(-S) linkage [Ni-N1-C1 173.4 (3)°]. The NCS, NH and free OH groups are involved in intermolecular hydrogen bonding. The H atoms of the NH and uncoordinated OH groups form hydrogen bonds with the S atoms of adjacent molecules, and the H atoms of coordinated OH groups also participate in hydrogen bonding with the H atom of the free OH groups of other molecules. The individual molecules are thus linked by hydrogen bonds to form a three-dimensional infinite network, part of which is shown in Fig. 2. Similar hydrogen bonding has been reported for other ethanolamine compounds (Yilmaz *et al.*, 1996, 1997).

Experimental

Solid KSCN (1.94 g, 20 mmol) was added slowly with continuous stirring to a solution of NiSO₄· $6H_2O$ (2.63 g, 10 mmol) in distilled water (15 ml). Diethanolamine (2.10 g, 20 mmol) was dissolved in distilled water (20 ml) and the two solutions were mixed and stirred for 2 h. A pale-green polycrystalline precipitate was filtered off and blue crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from the resulting solution at room temperature.

Crystal data

$ \begin{bmatrix} \text{Ni}(\text{NCS})_2(\text{C}_4\text{H}_{11}\text{NO}_2)_2 \end{bmatrix} \\ M_r = 385.15 \\ \text{Monoclinic, } P2_1/n \\ a = 6.8157 (8) \text{ Å} \\ b = 8.3508 (10) \text{ Å} \\ c = 14.725 (2) \text{ Å} \\ \beta = 100.119 (10)^{\circ} \\ V = 825.08 (18) \text{ Å}^3 \\ Z = 2 \\ \end{bmatrix} $	$D_x = 1.550 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 62 reflections $\theta = 4.0-12.5^{\circ}$ $\mu = 1.447 \text{ mm}^{-1}$ T = 173 (2) K Square prism, blue $0.30 \times 0.16 \times 0.14 \text{ mm}$
Data collection	
Siemens P4 diffractometer ω scans Absorption correction: ψ scan (XEMP; Siemens, 1994) $T_{\min} = 0.773$, $T_{\max} = 0.798$ 1568 measured reflections 1568 independent reflections 1072 reflections with $I > 2\sigma(I)$	$\theta_{\text{max}} = 27.50^{\circ}$ $h = -7 \rightarrow 7$ $k = -10 \rightarrow 10$ $l = -18 \rightarrow 18$ 3 standard reflections every 247 reflections intensity decay: none

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	2.069 (3)	N2-C12	1.480 (4)
Ni1-N2	2.096 (2)	N1-C1	1.159 (4)
Ni1-01	2.076 (2)	C21-C22	1.518 (4)
S1-C1	1.647 (3)	C12-C11	1.522 (4)
O1-C11	1.438 (4)	C22-O2	1.432 (4)
N2-C21	1.476 (4)		
N1-Ni1-N2	88.78 (10)	Ni1-N2-C12	106.34 (18)
N1-Ni1-O1	89.44 (10)	Ni1-N1-C1	173.4 (3)
N2-Ni1-O1	83.16 (9)	N1-C1-S1	178.5 (3)
Ni1-O1-C11	109.89 (18)	O2-C22-C21	110.0 (3)
C21-N2-C12	114.5 (3)	O1-C11-C12	110.0 (3)
Ni1-N2-C21	116.5 (2)		

Refinement

H atom treatment: see below $w = 1/[\sigma^2(F_o^2) + (0.0316P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1\!-\!H1\!\cdots\!O2^i\\ N2\!-\!H2\!\cdots\!S1^{ii}\\ O2\!-\!H3\!\cdots\!S1^{ii} \end{array}$	0.72 (4)	1.93 (4)	2.651 (3)	174 (5)
	0.88 (3)	2.81 (3)	3.630 (3)	156 (3)
	0.83 (4)	2.45 (4)	3.225 (3)	156 (4)

Symmetry codes: (i) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $\frac{1}{2} + z$; (ii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$.

H atoms bonded to O and N atoms were identified from difference syntheses and were refined freely. Other H atoms were included using a riding model (Sheldrick, 1997). The crystal is a non-merohedral twin. The twin matrix was determined as $(100/0\overline{10}/\frac{3}{4}0\overline{1})$ and the refined value of -0.7592 rather than -0.75 was derived from *XPREP* using the equation $c(\text{new}) = (2\cos\beta)/a - c(\text{old})$ to obtain the exact cell parameters. Reflections with h = 4 and 8 show partial overlapping and were therefore omitted. Reflections with h = 0 were split into two components with a refined *BASF* value of 0.216 (4). The resulting data set was read using *HKLF5* (Sheldrick, 1997).

Data collection: *XSCANS* (Fait, 1991); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

VTY and AK wish to thank Ondokuz Mayis University for financial support given to the project.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1413). Services for accessing these data are described at the back of the journal.

References

- Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Hursthouse, B. M., Izod, J. K., Mazid, M. A. & Thornton, P. (1990). Polyhedron, 9, 535–539.
- İçbudak, H., Yilmaz, V. T., Andac, Ö., Howie, R. A. & Ölmez, H. (1995). Acta Cryst. C**51**, 1759–1761.
- Karadag, A. & Yilmaz, V. T. (2000). Synth. Inorg. Met.-Org. Chem. 30, 359– 368.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XEMP (Version 2.10) and XP (Version 5.03). Siemens Analytical X-ray Instruments Inc., Wisconsin, Madison, USA.
- Yilmaz, V. T., İçbudak, H. & Howie, R. A. (1997). Acta Cryst. C53, 294–296.Yilmaz, V. T., İçbudak, H., Ölmez, H. & Howie, R. A. (1996). Turk. J. Chem. 20, 69–73.